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Abstract

High-precision (;0.015%/mass) isotope ratio measurements of Fe may be obtained by using magnetic-sector thermal
ionization mass spectrometry (TIMS), where rigorous correction of instrumentally produced mass fractionation can be made.
Such corrections are best done by using a double-spike approach, which was first introduced several decades ago. However,
previous derivations do not lend themselves to the high-precision isotope analysis that modern TIMS instruments are capable
of because of various assumptions of mass fractionation laws or constant atomic weights. Moreover, some of these previous
approaches took iterative approaches to the calculation, and none presented detailed error propagations. Here we present a
completely general derivation to the double-spike approach that may be used for any appropriate isotope system and is
applicable to the mass fractionation laws that are known to occur in TIMS. In addition, we present an assessment of error
propagation as a function of algorithm and spike isotope composition. This approach has produced the highest precision Fe
isotope ratio measurements yet reported, on the order of60.2 to 0.3 per mil for the54Fe/56Fe ratio, that correct for
instrumentally produced mass fractionation and yet retain natural, mass-dependent isotopic variations in samples. (Int J Mass
Spectrom 193 (1999) 87–99) © 1999 Elsevier Science B.V.
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1. Introduction

There have been relatively few isotopic studies of
intermediate-mass elements, in comparison to studies
of mass-dependent fractionation of the light stable
isotopes (e.g. [1]), or studies of heavier elements that
are part of radioactive decay systems (e.g. [2]).
However, intermediate-mass elements may undergo
natural, mass-dependent isotopic fractionation, as has
been discussed for Ca [3–5]. In the case of Fe, its
importance in metabolism, as well as nucleosynthetic

processes, has inspired a number of previous Fe
isotope investigations (Table 1; [6–12]). Most of
these studies used magnetic-sector TIMS in an effort
to maximize the precision. Alternative methods, such
as inductively coupled plasma mass spectrometry
(ICP-MS) have advantages in higher ionization effi-
ciencies as compared to TIMS, but suffer from ArN1

and ArO1 interferences on54Fe and56Fe, respec-
tively, which presents significant difficulty in obtain-
ing precise isotope ratios for all of the Fe isotopes.

A significant limitation of isotopic analysis using
TIMS is the potentially large and variable mass
fractionation that occurs in a TIMS source. A com-
mon approach to removing instrumentally produced* Corresponding author. E-mail: clarkj@geology.wisc.edu
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mass fractionation is to adjust the measured ratios of
interest to a single reference ratio. This approach,
often referred to as “internal normalization,” is useful

where one isotope may independently vary due to
radiogenic in-growth from a radioactive parent iso-
tope (e.g. [2]), or from nucleosynthetic processes (e.g.

Table 1
Summary of various studies of iron isotope measurements of normal Fe by different analytical techniquesa

Method 54Fe/56Fe 57Fe/56Fe 58Fe/56Fe Remarks Ref.

TIMS quadrupol
mass
spectrometry

0.0618
6 3.2‰

0.0243
6 12.3‰

0.003 61
6 52.6‰

Rapid analysis method well suited for Fe nutritional
tracer studies where the variation in Fe isotope
ratios are set to vary over a wide range.

[6]

SIMS (Internal
normalization)

[0.066 57 0.022 58
6 0.74‰

0.002 927
6 2.71‰

Data are internally normalized to54Fe/56Fe.
Instrumental mass bias is strongly dependent on the
Fe content of the analyzed phase. Ni isobar
corrections can be extreme. Internal normalization
is not suitable for evaluating mass-dependent
fractionation. In situ spot analyses are possible.

[7]

TIMS (Internal
normalization)

[0.062 669 0.023 261
6 0.10‰

0.003 113 2
6 1.39‰

Data were internally normalized to54Fe/56Fe. Internal
normalization is not suitable for evaluating mass-
dependent fractionation, but is an excellent method
for evaluation of nucleosynthesis processes.

[8]

TIMS external
normalization
to Fe standards
by ion counting

0.063 371
6 0.6‰

0.023 149
6 0.3‰

0.003 081 6
6 4.0‰

Instrumental mass bias determined by analysis of Fe
isotope reference materials and assumes samples
and standards fractionate identically. This requires
highly controlled analysis conditions; 0.1–1mg Fe
used for an analysis measured on ion-counting Daly
multiplier.

[9,10]

TIMS external
normalization
to Fe standards
measured on
Faraday
detectors

0.063 70
6 2.1‰

0.023 096
6 1.6‰

0.003 071 0
6 4.1‰

Instrumental mass bias for54Fe/56Fe empirically
measured using Fe isotope reference materials,
other Fe isotope ratios internally normalized to
54Fe/56Fe. Assumes samples and standards
fractionate identically requiring highly controlled
analysis conditions; 10mg Fe used for an analysis
measured on Faraday detectors.

[11]

Negative TIMS 0.063 623
6 0.7‰

0.023 106
6 0.3‰

0.003 079 9
6 0.6‰

Instrumental mass bias is limited by analyzing a high-
molecular-weight polyatomic species FeF4

2; 6 mg of
Fe used for an analysis.

[12]

TIMS double
spike method

0.063 679
6 0.30‰

0.023 088
6 0.15‰

0.003 061 6
6 0.28‰

Corrections for instrumental mass bias are rigorously
made using a mixed54Fe–58Fe double spike.
Analysis method is ideally suited for evaluating
both nucleosynthesis and mass-dependent isotope
fractionation processes; 4mg of Fe used for an
analysis, measured on Faraday detectors.

This
study

a All errors are quoted in relative per mil at the one standard deviation level. The error for the TIMS quadrapole data [6] is based on 7
analyses of an Fe standard. The error for the SIMS data [7] is calculated from the reported values of 4 mineral and metal standards. The errors
for the TIMS data from [8] is calculated from the reported values of 5 normal Fe solutions. The error for the TIMS data from [9–11] is
calculated from the reported precision of Fe standard material; errors for samples reported in [9,10] are estimated to be approximately an order
of magnitude higher, based on inconsistent variations between Fe isotope ratios. The errors for the negative TIMS data [12] are calculated from
6 analyses of an Fe standard. The errors for TIMS double-spike data (this study) are based on 21 analyses of an ultrapure Fe standard (Table
4), and reflect relative errors; absolute uncertainties are larger due to uncertainty in spike isotope composition (see text).
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[2,8]). Although internal normalization is capable of
producing high-precision Fe isotope ratios, on the
order of60.01% (or 0.1 per mil) by using TIMS [8],
this approach completely removes any natural, mass-
dependent isotopic fractionation that may exist in the
sample.

Two approaches may be taken that correct for
instrumentally produced mass fractionation and yet
retain natural, mass-dependent isotopic variations in
samples. One is an empirical approach, where the
average instrumental mass fractionation is estimated
by isotopic analysis of gravimetrically prepared iso-
topic standards. This approach was applied to Fe by
Taylor et al. [13] and Dixon et al. [9,10], who report
the reproducibility of Fe standards as60.3 per mil
(‰) per mass. However, the data reported for samples
[9] are considerably more variable and contain inter-
nal inconsistencies among the Fe isotope ratios, sug-
gesting that the true precision on samples of unknown
isotopic composition and matrices is on the order of
1–3 per mil per mass using the empirical approach.

It has long been known that the most rigorous
approach for correcting instrumentally produced mass
fractionation and, at the same time, retaining natural
isotope variations in samples, is the double-spike
method (e.g. [13–15]). The advantage of the double-
spike approach is that it is not affected by variations
in sample matrix, sample loading, or source condi-
tions, factors that can produce significant uncertain-
ties in the empirical approach to correcting instrumen-
tal mass fractionation.

In this contribution, we present a completely gen-
eral formulation of the double-spike approach that
avoids previous approximations and assumptions that
either prevented precise isotopic measurements, in-
volved iterative calculations, or were derived for a
specific isotope system.

2. Double-spike method

The double-spike technique is superior to the
approaches that have been previously taken for Fe
isotope analysis, because it allows rigorous instru-
mental mass fractionation corrections to be made, and

simultaneously preserving naturally occurring, mass-
dependent isotope variations (e.g. [13–15]). The dou-
ble-spike approach can only be used for elements with
four or more isotopes and in its most general appli-
cation, requires two analyses; an analysis of an
unspiked aliquot of the unknown (sample), and an
analysis of a mixture that is composed of the sample
and a tracer (spike) of known isotopic composition,
where the spike is composed of two of the isotopes of
the element of interest. Iron has four naturally occur-
ring isotopes and high-purity enriched tracers of all
four iron isotopes are available.

The double-spike method has been extensively
discussed in the literature, initially in regard to cor-
recting instrumental mass fractionation during Pb
isotope analysis (e.g. [3,14–21]), prior to establish-
ment of the silica-gel method for minimizing isotopic
fractionation for Pb analysis using TIMS (e.g. [22]).
There has been recent renewed interest in the double-
spike approach in studies of natural, mass-dependent
isotopic fractionation of Ca and Fe [3–5,23–25].
However, previous discussions on the double-spike
method have shortcomings in their application to the
general problems involved in modern, high-precision
isotopic measurements of naturally fractionated sam-
ples because they either (1) followed an iterative
approach [13,14], (2) made simplifying assumptions
in terms of constant atomic weights of spike and
sample [17,18], or (3) assumed very simple linear
mass fractionation laws [14,19,20] that are not appli-
cable to isotopic analysis of elements that follow more
complex instrument-produced mass fractionation,
such as an exponential form (e.g. [3,26]); these
shortcomings produce very large errors at the per mil
level of precision, which are too large to be useful for
intermediate-mass elements. As will be discussed in
Sec. 2.1, several of these previous studies use more
complex (although still “linear”) mass fractionation
laws [15,16,21] that may be adapted to approximate
exponential mass fractionation [3]. However, none of
the above studies provide completely general solu-
tions to the double-spike approach. Here we present a
completely general derivation to the double-spike
method that is explicitly related to the three-dimen-
sional geometry of the approach, and which closely
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approximates exponential mass fractionation. We also
discuss in detail propagated errors as a function of the
spike composition, spike to sample ratios, and uncer-
tainties in the measured isotope ratios.

2.1. Geometrical presentation

Hofmann [19] provided an excellent three-dimen-
sional visualization of the double-spike approach,
which is presented in the notation used here in Fig. 1.
Isotope ratiosX, Y, and Z are generally defined as
mi/mj, wheremi is variable andmj is a constant for a
given set of isotope ratios (such asX 5 58Fe/56Fe,
Y 5 54Fe/56Fe, andZ 5 57Fe/56Fe in Fig. 1). The
geometry of the double-spike method requires a

common denominator isotope (mj) so that mixing
curves are straight lines. The true isotopic composi-
tions of the unknown (XU

T , YU
T , and ZU

T ), sample1
spike mixture (XM

T , YM
T , andZM

T ), and spike (XS, YS,
andZS) must lie along a mixing lineUMS (Fig. 1).
However, in general, the measured isotopic composi-
tions for the unknown (XU

M, YU
M, andZU

M) and mixture
(XM

M, YM
M, andZM

M) will lie along mass fractionation
curves that pass through the true isotopic ratios; these
curves are illustrated as straight lines in Fig. 1 for
simplicity, but they may follow any mass fraction-
ation law. The precision that the lineUMS is deter-
mined directly relates to the precision of the calcula-
tion of the true isotopic composition of the unknown
(XU

T , YU
T , andZU

T ). The uncertainty in the lineUMS is
in part a function of the angle between the unknown
and mixture mass fractionation curves (curvesU and
M in Fig. 1, respectively); this angle is defined as
uU2M, and is discussed below in Sec. 3 on error
propagation. The spike isotopic composition (XS, YS,
andZS) shown in Fig. 1 is that of our U.W. Madison
58Fe–54Fe spike.

2.2. Mass fractionation laws

A number of mass fractionation “laws” have been
used in TIMS analysis. The simplest is often de-
scribed as “linear mass fractionation,” which Hart and
Zindler [27] define as

YU
M 2 YU

T

YU
T 5

aY

aX

XU
M 2 XU

T

XU
T 5

aY

aZ

ZU
M 2 ZU

T

ZU
T (1)

Isotope ratios are previously defined andaX, aY, and
aZ are mass-difference coefficients, defined as

aX 5 mi2j
X , aY 5 mi2j

Y , aZ 5 mi2j
Z (2)

wheremi2j 5 (mi 2 mj), and is defined as the mass
difference in the numerator and denominator isotopes
for a particular isotope ratio. For example, ifmj 5
56, aX 5 12, aY 5 22, andaZ 5 11, whereX 5
58Fe/56Fe,Y 5 54Fe/56Fe, andZ 5 57Fe/56Fe. Eq. (1)
produces a straight line on a plot of two measured
(fractionated) isotope ratios, such asXU

M versusYU
M or

XU
M versusZU

M.

Fig. 1. Three-dimensional illustration of unknown (sample)–mix-
ture–spike relations for Fe isotopes, following the approach out-
lined by Hofmann [19]. True dimensions are illustrated using
normal Fe and the U.W. Madison58Fe–54Fe double spike. The
specific case wheremj 5 56 is shown here. Circles represent true
isotope compositions for the unknown (XU

T , YU
T , ZU

T ), spike1
sample mixture (XM

T , YM
T , ZM

T ), and spike (XS, YS, ZS). CurvesU
andM are mass fractionation curves (shown as true linear fraction-
ation for simplicity) for unknown (sample) and mixture (spike1
sample), respectively. CurveU calculated usingf 5 20.5 to10.5.
CurveM calculated usingf 5 20.4 to10.4. Arbitrary measured
(fractionated) compositions are shown as squares for the unknown
(XU

M, YU
M, ZU

M) and mixture (XM
M, YM

M, ZM
M). Line UMS connects the

true isotopic compositions of the unknown, mixture, and spike.
Inset shows the three-dimensional view (true relative scale) down
line UMS, which illustrates the angleuU2M, which is defined as
the angle between the unknown and mixture fractionation lines.
Maximization ofuU2M tends to minimize propagated errors in the
double-spike method.
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However, another commonly used “linear” mass
fractionation law has the form

XU
T 5 XU

M~1 1 aX f1! (3)

(e.g. [26]; isotope ratios are defined above;f1 is the
mass fractionation factor per mass). Assuming an
analogous relation for isotope ratioY, Eq. (3) does not
produce a straight line on a plot of two measured
(fractionated) isotope ratios, such asXU

M versusYU
M,

although it is a common misconception that this is the
case. This is easily seen by rearranging Eq. (3) so that
XU

M is the dependent variable, or casting Eq. (3) in the
Hart and Zindler [27] form. To distinguish the above
mentioned two mass fractionation laws, we refer to
Eq. (1) as true linear mass fractionation and Eq. (3) as
a linear form for mass fractionation, recognizing that
the latter does not describe a straight line on a plot of
XU

M versusYU
M or XU

M versusZU
M.

It is now well accepted that instrumentally pro-
duced mass fractionation of intermediate-mass ele-
ments follows an exponential form [3,24,26,27]. So-
lution of the double-spike problem by using a true
exponential mass fractionation law is not possible due
to the transcendental nature of the combined equa-
tions. However, as noted by Russell et al. [3], the
exponential mass fractionation law may be approxi-
mated through a series expansion. Expansion to the
first-order produces

XU
T 5 XU

MS1 1 f1mi2j
X 2 f1

@mi2j
X #2

2mj
D (4)

which is essentially the linear form [Eq. (3)] with a
modification of the mass-difference coefficients,
where

aX 5 mi2j
X 2

@mi2j
X #2

2mj
, aY 5 mi2j

Y 2
@mi2j

Y #2

2mj
,

aZ 5 mi2j
Z 2

@mi2j
Z #2

2mj
(5)

Higher-order expansions of the exponential law no
longer follow the simple functional form of Eq. (3),
which prevents reasonable simultaneous solution (in

the following). We refer to Eq. (4) as anexponential
approximation.

Using ourexponential approximation[Eq. (4)] for
the mass fractionation law introduces an error of less
than 0.1 per mil in, e.g. the54Fe/56Fe ratio, over the
range of instrumental fractionation that we measure
and assuming that the true instrumentally produced
mass fractionation follows an exponential law (Fig.
2). However, if true linear mass fractionation [Eq. (1)]
or the linear form [Eq. (3)] is used, the errors
introduced are on the order of 1 per mil in the
54Fe/56Fe ratio, over the range of instrumental frac-
tionation that we measure and assuming that the true
instrumentally produced mass fractionation follows
an exponential law (Fig. 2). Such large errors will
obliterate most of the isotopic variations seen in

Fig. 2. Deviations in various mass fractionation laws as compared
to exponential mass fractionation.dXmeas

e is defined as the per mil
deviation in the measured58Fe/56Fe ratio, relative to the true (not
fractionated) ratio, as theoretically generated using exponential
mass fractionation and ab of 10.5 to20.5 (e.g. [3]); the majority
of measured (fractionated)58Fe/56Fe ratios using TIMS fall within
the range of610 per mil.Ymeas

i 2 Ymeas
e is defined as the per mil

difference in the measured54Fe/56Fe ratio calculated using a given
fractionation lawi , relative to that calculated assuming exponential
mass fractionation, at a givendXmeas

e value. Both true linear mass
fractionation [Eq. (1)] and fractionation that follows a linear form
[Eq. (3)] deviate significantly from exponential mass fractionation
over the range of measured (fractionated) Fe isotope ratios, which
introduces large errors in double-spike solutions that assume such
fractionation corrections (e.g. [15,19,21]). Exponential mass frac-
tionation can be closely approximated using a first-order series
expansion of the exponential equation [Eqs. (4) and (5)], which can
be considered a modification of the linear form, and this approach
is followed here.
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nature for Fe [23–25]. Therefore, solutions to the
double-spike method that assume either true linear
mass fractionation [Eq. (1)] (e.g. [19]) or the linear
form for mass fractionation [Eq. (3)] (e.g. [15]), will
have very large propagated errors if the measured data
follow an exponential law. In the error analysis
presented below, use of the exponential approxima-
tion [Eq. (4)] accounts for only 5%–10% of the total
error in the final calculations, assuming instrumental
mass fractionation follows an exponential law.

3. General derivation of the double-spike solution

The fractionation curve for the unspiked sample
(unknown) (curveU in Fig. 1) is described by

XU
T 5 XU

M~1 1 aX f1!, YU
T 5 YU

M~1 1 aYf1!,

ZU
T 5 ZU

M~1 1 aZ f1! (6)

where f1 is the mass fractionation factor for the
sample (unknown), andaX, aY, and aZ are the
mass-difference coefficients, as modified by the ex-
ponential approximation [Eq. (5)], and isotope ratios
X, Y, andZ are defined previously.

The fractionation curve for the mixture (spike1
sample) (curveM in Fig. 1) is described by

XM
T 5 XM

M~1 1 aX f2!, YM
T 5 YM

M~1 1 aYf2!,

ZM
T 5 ZM

M~1 1 aZ f2! (7)

where f2 is the mass fractionation factor for the
mixture (spike1 sample).

The line that connects the true isotopic composi-
tions of the sample, mixture, and spike (lineUMS in
Fig. 1) is given by

XM
T 5 XU

T 1 h~XS2 XU
T!,

YM
T 5 YU

T 1 h~YS2 YU
T!,

ZM
T 5 ZU

T 1 h~ZS2 ZU
T! (8)

whereh is the parameter for the parametric equation
form of line UMS, andXS, YS, andZS are the true
isotopic compositions of the spike, for isotope ratios
X, Y, andZ, respectively.

Because the isotope ratiosX, Y, and Z may be
defined asmi/mj, wheremi is a variable andmj is a
constant for a given set of isotope ratios, we may
define three sets of ratios, which produce three sets of
double-spike solutions. In the case of Fe, formj 5 56
(“56-based solutions”), we defineX 5 58Fe/56Fe,
Y 5 54Fe/56Fe, andZ 5 57Fe/56Fe (Fig. 1). Formj 5

54 (“54-based solutions”), we defineX 5 56Fe/54Fe,
Y 5 57Fe/54Fe, and Z 5 58Fe/54Fe. For mj 5 57
(“57-based solutions”), we defineX 5 54Fe/57Fe,
Y 5 56Fe/57Fe, andZ 5 58Fe/54Fe. Because of the
very small abundance of58Fe, we do not define a set
of ratios withmj 5 58.

Although we present the graphical illustration of
Hofmann [19] in Fig. 1, our derivation is quite
different; Hofmann used a true linear mass fraction-
ation law [Eq. (1)], which introduces large errors
(many per mil) in the double-spike solutions when
instrumental mass fractionation follows the exponen-
tial or linear form laws. The double-spike solutions of
Gale [15] and Hamelin et al. [21] use a linear form for
mass fractionation [Eq. (3)], which can be recast to
approximate exponential mass fractionation, but
Gale’s solution is only given for Pb, and Hamelin et
al. do not provide their solutions.

Equations (6), (7), and (8) are arranged for solution
of the nine unknowns,XU

T , YU
T , ZU

T , XM
T , YM

T , ZM
T , f1,

f2, andh. Combining these sets produces

XU
M~1 1 aX f1!~1 2 h! 1 hXS5 XM

M~1 1 aX f2! (9)

YU
M~1 1 aYf1!~1 2 h! 1 hYS5 YM

M~1 1 aYf2!
(10)

ZU
M~1 1 aZ f1!~1 2 h! 1 hZS5 ZM

M~1 1 aZ f2!
(11)

Solution of Eq. (9)–(11) produces a solution forf1,
the primary parameter of interest:

f1 5
aZZM

MA 1 aYYM
MB 1 aXXM

MC

aYaZ~XM
M 2 XS!~YU

MZM
M 2 YM

MZU
M! 1 aXD

(12)

where

A 5 XS~YU
M 2 YM

M! 1 YS~XM
M 2 XU

M! 1 XU
MYM

M

2 XM
MYU

M
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B 5 XS~ZM
M 2 ZU

M! 1 ZS~XU
M 2 XM

M! 1 XM
MZU

M

2 XU
MZM

M

C 5 YS~ZU
M 2 ZM

M! 1 ZS~YM
M 2 YU

M! 1 YU
MZM

M

2 YM
MZU

M

D 5 aY~ZM
M 2 ZS!~XU

MYM
M 2 XM

MYU
M! 2 aZ~YM

M 2 YS!

z ~XU
MZM

M 2 XM
MZU

M!

Note that these are not coefficients of a plane, but
are simply used for convenience.

It is also useful to calculate the spike to sample
ratio, which is obtained through solution for the
parameterh by using Eqs. (9)–(11):

h 5
2aYaZAh 1 aX~2aYBh 1 aZCh!

2aYaZDh 1 aX~2aYEh 1 aZFh!
(13)

where

Ah 5 ~XM
M 2 XU

M!~YU
MZM

M 2 YM
MZU

M!

Bh 5 ~ZM
M 2 ZU

M!~XU
MYM

M 2 XM
MYU

M!

Ch 5 ~YM
M 2 YU

M!~XU
MZM

M 2 XM
MZU

M!

Dh 5 ~XS2 XU
M!~YU

MZM
M 2 YM

MZU
M!

Eh 5 ~ZS2 ZU
M!~XU

MYM
M 2 XM

MYU
M!

Fh 5 ~YS2 YU
M!~XU

MZM
M 2 XM

MZU
M!

h is related to the sample to spike ratio by

h 5 S1 1
MU

MS

AbU
mj

AbS
mjD21

(14)

whereMU andMS are the moles of sample (unknown)
and spike, respectively, and AbU

mj and AbS
mj is the

abundance of massmj in the sample (unknown) and
spike, respectively (i.e.mj 5 56 for X 5 58Fe/56Fe,
Y 5 54Fe/56Fe, and Z 5 57Fe/56Fe). Note that the
weights of the spike and sample are not required in the
solution. If the abundances ofmj in the sample
(unknown) and spike are known, the sample to spike
ratio may be directly calculated fromh. Dodson [18]
assumed thath (he defines asPK) is directly equal to
the spike to sample ratio in his solution to the
double-spike problem, an assumption that introduces
significant errors at the per mil level of precision.

Error propagation: Although rigorous correction
for instrumental mass fractionation can be made by
using the double-spike technique, error amplification
can produce uncertainties in the corrected ratios that
are up to or exceed by an order of magnitude the
errors that would be produced using the same mea-
sured data and internal normalization. The amount of
error amplification is strongly dependent upon the
isotopic composition of the spike and the spike to
sample ratio in the mixture aliquot, and here we
present an analysis of the optimum spike isotope
composition for Fe isotope analysis (see also Table 2).

The precision of the true isotopic ratios of the
unspiked aliquot are in part controlled by the angle

Table 2
Parameters for error propagation calculationsa

Solution set XU
M YU

M ZU
M XM

M YM
M ZM

M

mj 5 56 58Fe/56Fe
6 0.1%

54Fe/56Fe
6 0.025%

57Fe/56Fe
6 0.025%

58Fe/56Fe
6 0.2%

54Fe/56Fe
6 0.01%

57Fe/56Fe
6 0.02%

mj 5 54 56Fe/54Fe
6 0.025%

57Fe/54Fe
6 0.025%

58Fe/54Fe
6 0.1%

56Fe/54Fe
6 0.01%

57Fe/54Fe
6 0.02%

58Fe/54Fe
6 0.02%

mj 5 57 54Fe/57Fe
6 0.025%

56Fe/57Fe
6 0.025%

58Fe/57Fe
6 0.1%

54Fe/57Fe
6 0.02%

56Fe/57Fe
6 0.02%

58Fe/57Fe
6 0.02%

a Error propagation illustrated in Figs. 3 and 4 are the average one standard deviation errors calculated forXU
T , YU

T , andZU
T , on a per-mass

basis (i.e. the error calculated for the54Fe/56Fe ratio is divided by 2, etc.), using 1000 randomly generated values for (XU
M, YU

M, ZU
M) and (XM

M,
YM

M, ZM
M) assuming exponential mass fractionation (b 5 20.5 to10.5, which matches the average measured range), and randomly assigned

errors for the isotope ratios within the limits below. The assigned errors match those estimated for the measured ratios based on the external
precision for standards that have been corrected for mass fractionation using internal normalization.
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uU2M, which is the intersection angle between the
unknown and mixture fractionation curves, as viewed
down the mixing lineUMS (inset; Fig. 1). As the
angle between the two fractionation curves decreases,
either due to decreasing the spike to sample ratio or
changing the isotopic composition of the spike, cal-
culation of the true isotopic composition of the
unknown aliquot can be subject to large errors (Fig.
3); this general effect was noted by Hamelin et al.
[21]. In all cases, at low spike to sample ratios, the
nearly coincident mass fractionation curvesU andM

(Fig. 1) produce large errors in the corrected ratios for
the unknown (Fig. 3). Conversely, althoughuU2M is
greatest at high spike to sample ratios, the true
isotopic composition of the unknown is poorly deter-
mined because of the large extrapolation of the line
UMS (Figs. 1 and 3). The smallest amount of error
propagation tends to occur when the choice of spike
producesuU2M greater than 10° (Fig. 3). The most
robust double-spike results are produced when a spike
isotope composition is chosen that produces propa-
gated errors which are low and relatively constant

Fig. 3. Example geometric relations and calculated error propagation for double and triple spikes for Fe isotopes.Xspike is the mole fraction
of spike in the mixture. Heavy solid lines indicate the variations inuU2M, the angle between the unknown and mixture fractionation lines (Fig.
1), as a function of the fraction of spike in the mixture. Dashed lines indicate the per mil errors (1 standard deviation) in calculated true isotope
ratiosXU

T , YU
T , ZU

T , on a per-mass basis, as a function of the fraction of spike in the mixture, using the parameters in Table 2. Calculated errors
assume errors in both the unknown and mixture measurements (Table 2). Synthetically generated measured ratios are assumed to fractionate
following an exponential law, and data are corrected using the exponential approximation [Eqs. (4) and (5)]. Three sets of double-spike
solutions can be written, each with a distinct denominator isotope (mj). For mj 5 56, we defineX 5 58Fe/56Fe, Y 5 54Fe/56Fe, andZ 5
57Fe/56Fe (Fig. 1). Formj 5 54, we defineX 5 56Fe/54Fe,Y 5 57Fe/54Fe, andZ 5 56Fe/54Fe. Formj 5 57, we defineX 5 54Fe/57Fe,Y 5
56Fe/57Fe, andZ 5 58Fe/57Fe. In all cases, as the fraction of spike decreases below 0.1, propagated errors increase dramatically, in part
reflecting the decrease in the angleuU2M. In general, errors are lowest whenuU2M is greatest, althoughuU2M is not the sole contributor to
the errors. The most robust double-spike solutions will involve a spike that produces low errors over a range ofXspike in the mixtures. The
gray bar indicates the measured per mil error for our Fe standard using the U.W. Madison58Fe–54Fe spike and assuming a constant reference
ratio for the double-spike calculation (see text). (A) Calculations using the U.W. mixed58Fe–54Fe spike (7.7%58Fe, 92.3%54Fe). (B)
Calculations using a mixed57Fe–54Fe spike (20%57Fe, 80%54Fe). (C) Calculations using a mixed57Fe–54Fe spike (80%57Fe, 20%54Fe).
(D) Calculations using a mixed58Fe–57Fe–54Fe spike (20%58Fe, 20%57Fe, 60%54Fe).
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over a reasonable range ofXspike (fraction of spike in
the mixture), generally betweenXspike 5 0.2–0.8
[Fig. 3(A)].

Error analysis of a variety of double and triple
spikes indicates that, for Fe, the lowest propagated
errors are produced with a mixed58Fe–54Fe spike
[Fig. 3(A)]. Small, but significant variations in error
propagation are produced over the possible range of
spike compositions for an58Fe–54Fe spike. Propa-
gated errors are lowest for an58Fe–54Fe spike that is
composed of;10% 58Fe and;90% 54Fe (Fig. 4),
which is close to the isotopic composition of the U.W.
Madison mixed58Fe–54Fe spike (see Table 4).

In its most general application, where the isotopic
composition of the sample is completely unknown,

the double-spike procedure requires analysis of an
unspiked aliquot and a spiked aliquot. This approach
must be taken, for example, in the case of Pb isotope
analysis, because Pb isotope ratios in natural samples
are not predictably correlated, being functions of age
and U/Pb and Th/Pb ratios. However, if isotopic
variations are only a result of naturally occurring,
mass-dependent fractionation, the unspiked aliquot
does not need to be measured for each sample, once
the natural isotopic variation of a particular reservoir
is characterized (e.g. [3]). This simplification is robust
and will not produce any bias in the results unless (1)
the natural-occurring mass fractionation is very large
and follows a different mass-dependent fractionation
law from that used to correct instrumental mass
fractionation (e.g. linear law versus Rayleigh distilla-
tion), and (2) the unknown sample does not lie on the
natural fractionation curve of the assumed reservoir.
The first factor is entirely negligible for natural
isotope variations on the order of several per mil. The
second factor may be significant for different plane-
tary bodies or nucleosynthetic reservoirs; this is per-
haps best illustrated for oxygen isotopes, where ter-
restrial and lunar samples lie on an18O/16O–17O/16O
natural fractionation array that is distinct from that of
some meteorite components or the planet Mars [28].

The validity of only analyzing the mixture when all
natural compositions lie on the same natural fraction-
ation line can be visualized in Fig. 1 (inset); it is the
mixture curve (curveM) that determines the intersec-
tion of line UMS with the natural fractionation curve
(curve U), if curve U is known. Application of the
“mixture-only” approach increases the precision of
the corrected ratios by approximately a factor of 2,
because error propagation is not dependent on errors
associated with measurement of the unspiked aliquot.
In the case of Fe isotopes, this approach is a signifi-
cant advantage because the most difficult mass of Fe
to analyze in the unspiked aliquot is58Fe due to its
low abundance and isobaric interferences by58Ni, as
well as the fact that natural isotopic variations are
small. Errors associated with analysis of58Fe in the
mixture aliquot are significantly less when using an
58Fe–54Fe spike because of the increased abundance
of 58Fe in the mixture.

Fig. 4. Geometric and error relations for an58Fe–54Fe double spike.
X58 spikeis the mole fraction of58Fe spike in the58Fe–54Fe double
spike. Heavy solid lines indicate the variations inuU2M, the angle
between the unknown and mixture fractionation lines (Fig. 1), as a
function of X58 spike. Dashed lines indicate the per mil errors (1
standard deviation) in calculated true isotope ratiosXU

T , YU
T , ZU

T , on
a per-mass basis, as a function ofX58 spike, using the parameters in
Table 2. Calculated errors assume errors in both the unknown and
mixture measurements (Table 2). Synthetically-generated measured
ratios are assumed to fractionate following an exponential law, and
data are corrected using the exponential approximation [Eq. (4)].
The fraction of the58Fe–54Fe double spike in the mixture is set at
0.5 (Xspike). As noted in Fig. 3, three sets of double-spike solutions
can be written, each with a distinct denominator isotope (mj);
curves are shown formj 5 56 (see Fig. 1),mj 5 54, andmj 5
57. In all cases, asX58 spikedecreases below 0.05 or exceeds 0.9,
propagated errors increase dramatically. The generally increasing
error with increasingX58 spike(aboveX58 spike5 0.2) in part reflects
the decrease in the angleuU2M for the solution setsmj 5 56 and
mj 5 54. The U.W. Madison58Fe–54Fe double spike (7.7%58Fe,
92.3% 54Fe) lies near the minimum for propagated errors for all
three solution sets.
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Absolute uncertainties in the spike isotope compo-
sition do not affect the precision of the double-spike
solutions, but do affect the absolute values of the
corrected Fe isotope composition of the unknown.
The confidence of relative differences in isotopic
compositions for samples is therefore unaffected by
the absolute uncertainty of the spike. The accuracy of
absolute Fe isotope ratios for a sample, however, is
linearly related to the accuracy of the spike isotopic
composition; a one per mil/mass shift in the spike
isotopic composition produces a one per mil/mass
shift in the sample isotopic composition (although the
relative isotopic difference between samples is unaf-
fected). We estimate that the absolute uncertainty in
the isotopic composition of our spike is 2%–3‰ per
mass, and the absolute uncertainty of our measure-
ments will be equal to this range. The linear relation
between accuracy of the absolute isotope composi-
tions of the sample and that of the spike is indepen-
dent of the spike to sample ratio.

4. Mass analysis of Fe

All isotope analyses were conducted at the Univer-
sity of Wisconsin Radiogenic Isotope Laboratory
using a Mircomass Sector 54 TIMS mass spectrome-
ter. This instrument is fitted with seven Faraday
collectors and an analog Daly detector. Filament
ribbon used for Fe isotope analysis is 99.999% pure
(“zone-refined”) Re and is 0.0010 in. thick by 0.030
in. wide. After adding an Al2O3 slurry to a single
blank filament, the Fe sample (;4 mg of Fe) is loaded,
followed by 1M H3PO4, followed by silica gel. This

loading recipe was chosen after evaluating the boric
acid–silica gel technique [6,8,10]. The Al2O3 slurry
emitter produces longer lasting and more stable ion
beams and high ion currents (.2 3 10211 A total
current) as compared to the boric acid–silica gel
technique [29].

Mass analysis of Fe uses a two-scan multicollector
routine, in addition to a background scan, that moni-
tors interferences caused by54Cr and58Ni, using52Cr
and60Ni, respectively (Table 3).Corrections for these
isobars are made using54Cr/52Cr 5 0.0282 and58Ni/
60Ni 5 2.616. The54Cr correction on54Fe is typically
0.002% at the beginning of the analysis and drops to
0 by the end of the analysis. To avoid adding noise to
the data we do not use Ni-corrected ratios unless the
60Ni ion intensity average for a block is.9 3 10217

A. This threshold was chosen by evaluating the
58Fe/56Fe ratio measured for unspiked Johnson-
Mathey (J-M) Fe standard data; it produces the lowest
external standard deviation measurement for the58Fe/
56Fe measurement. We note that Ni isobaric correc-
tions were at most a 0.01% correction. Nickel isobaric
interferences, when present, burned off during the
course of the run, and only 10% of the analyses made
required Ni isobaric corrections.

5. Precision of Fe isotope measurements

Our lab standard is a J-M Fe standard, and this can
be measured to a precision of60.26 per mil (1 SD)
for the 54Fe/56Fe ratio, using 21 analyses of 12
mixtures (Xspike 5 0.13–0.38; Table 4).Using the
average ratios (when available) of mixtures that have

Table 3
Collector configuration used for static multicollector analysis of Fe isotope ratiosa

Low 2 Low 1 Axial High 1 High 2 High 3 High 4

Background 51.5 52.5 53.5 54.5 55.5 56.5
Scan 1 52Cr 54Fe 56Fe
Scan 2 56Fe 57Fe 58Fe 60Ni

a The Micromass Sector 54 collector block is designed for a working range in mass spread of 9.5%. To simultaneously analyze all four Fe
isotopes and continuously monitor for Cr and Ni isobars would require a relative mass spread of 14.4%. Therefore, two multicollection scans
are used. A beam growth correction using the ion intensity measured for56Fe in scans 1 and 2 is used for measurement of the54Fe/57Fe and
54Fe/58Fe ratios.
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been run in duplicate produces a precision of60.12
per mil (1 SD) for the54Fe/56Fe ratio. There is no
correlation between the calculated true isotopic com-
position of the standard with that of the fraction of
spike in the mixture (Fig. 5), confirming the robust-
ness of the double-spike corrections. Overall, calcu-
lations usingmj 5 56 or 57 produce similar results
and errors, as expected from the error propagation
models (Figs. 3 and 4); solutions based onmj 5 54
produced similar results but the spread in repeat
analyses was greater as compared to solutions using
mj 5 56 or 57. Eighteen of the analyses yielded
solutions formj 5 54 or 57 that were between 0.1

and 0.3 per mil/mass of the solutions usingmj 5 56.
The analyses that produced different solutions using
mj 5 56, 57, or 54 were typically associated with
unstable ion beams. Although error propagation sug-
gests thatmj 5 57 solutions should be the most
precise (Figs. 3 and 4), we believe that the impreci-
sion of themj 5 57 and 54 solutions are largely a
reflection of the two-scan multicollector routine used
to analyze the Fe mass spectrum, because ion beam
fluctuations are likely to cause imprecision of the
measurements for54Fe/57Fe and 58Fe/54Fe ratios,
which cannot be measured in a single scan (Table 3).

The average of 21 analyses of the J-M Fe standard

Table 4
Corrected iron isotope compositions of the UW mixed54Fe–58Fe double spike and the J-M Fe standarda

54Fe/56Fe Error 57Fe/56Fe Error 58Fe/56Fe Error d56Fe ‰
Error
‰

Frac
spike
in mix

UW mixed 54Fe–58Fe spike
34.598 639 0.068 788 678 2.419 7 629

J-M ultra pure Fe standard
Mix 1 0.063 646 68 0.023 094 61 0.003 063 1 64 0.59 0.13 0.373

0.063 714 618 0.023 082 63 0.003 060 0 68 20.49 0.28 0.373
Mix 2 0.063 664 67 0.023 091 61 0.003 062 3 63 0.29 0.11 0.133
Mix 3 0.063 707 616 0.023 083 63 0.003 060 3 67 20.38 0.24 0.310

0.063 660 69 0.023 091 62 0.003 062 4 64 0.35 0.14 0.310
Mix 4 0.063 672 611 0.023 089 62 0.003 061 9 65 0.17 0.17 0.187

0.063 719 614 0.023 081 62 0.003 059 9 67 20.56 0.22 0.187
Mix 5 0.063 669 612 0.023 090 62 0.003 062 1 66 0.23 0.19 0.191
Mix 6 0.063 679 616 0.023 088 63 0.003 061 6 67 0.07 0.25 0.183

0.063 669 615 0.023 090 63 0.003 062 1 67 0.23 0.23 0.183
Mix 7 0.063 677 610 0.023 088 62 0.003 061 7 65 0.10 0.15 0.237

0.063 676 610 0.023 089 62 0.003 061 7 65 0.10 0.16 0.237
Mix 8 0.063 694 610 0.023 085 62 0.003 060 9 64 20.18 0.15 0.213

0.063 647 612 0.023 094 62 0.003 063 0 66 0.56 0.20 0.213
Mix 9 0.063 686 617 0.023 087 63 0.003 061 3 68 20.05 0.27 0.193

0.063 667 612 0.023 090 62 0.003 062 1 66 0.25 0.19 0.193
Mix 10 0.063 680 613 0.023 088 62 0.003 061 5 66 0.04 0.20 0.164
Mix 11 0.063 676 69 0.023 089 62 0.003 061 7 64 0.10 0.14 0.242

0.063 687 615 0.023 087 63 0.003 061 2 67 20.07 0.23 0.242
Mix 12 0.063 669 69 0.023 090 62 0.003 062 0 64 0.22 0.15 0.379

0.063 695 68 0.023 085 61 0.003 060 8 64 20.19 0.13 0.379

Average 0.063 679 619 0.023 088 63 0.003 061 6 68 0.06 0.29

a The composition of the UW mixed54Fe–58Fe is the average of 4 analyses. The quoted errors are one standard deviation of the mean based
on internal normalization of the data to the average measured54Fe/57Fe ratio. Errors for the J-M Fe standard are one standard error as calculated
by individual block analyses of the mixture aliquot. The different mixes for the J-M Fe standard analyses refer to differing spike to sample
ratios in the mixture aliquot (Frac spike in mix column); each analysis is a separate filament load. Errors for the average J-M Fe standard are
one standard deviation. The J-M Fe standard was prepared from 1 g of ultrapure Fe rod purchased from Johnson Matthey chemicals, Lot #
010785.
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is 54Fe/56Fe 5 0.063 6796 19 (1 SD),57Fe/56Fe 5
0.023 0886 3, 58Fe/56Fe 5 0.003 061 66 8 (Table
4). Isotopic analysis of a wide variety of igneous rocks
yields 54Fe/56Fe 5 0.063 6856 16 (1 SD), 57Fe/
56Fe 5 0.023 0876 3, 58Fe/56Fe 5 0.003 061 36 7
(n 5 20) [24], which is indistinguishable from the
isotopic composition of J-M Fe. We therefore com-
bine the data sets to define a bulk Earth-Moon Fe
isotope composition of54Fe/56Fe 5 0.063 6836 17
(1 SD),57Fe/56Fe 5 0.023 0876 3; and58Fe/56Fe 5
0.003 061 46 8. By using this bulk Earth-Moon
(E-M) composition as a reference, we define:

d56Fe5 ([56Fe/54Fe]sample/[
56Fe/54Fe]E-M 2 1) 3 103

(15)

We use the inverse of the measured54Fe/56Fe ratio to
follow the convention of stable isotope measure-
ments, which defined values for isotope ratio varia-
tions as “heavy over light” masses. Use of a different
set of isotope ratios such as the57Fe/54Fe or58Fe/54Fe
are equally valid, and although use of these ratios
would produce larger variations ind values because
the mass difference is larger, the errors associated
with these corrected values are proportionally larger
using the double-spike approach. This is also true for
the empirical approach [10].

The accuracy of our reported Fe isotope ratios are

excellent as compared to the iron isotope ratios
reported by Taylor et al. [11] and Walczyk [12]; the
54Fe/56Fe ratio determined in this study is within 0.2
and 1 per mil, respectively, of the54Fe/56Fe ratio
reported by these workers. In contrast, the54Fe/56Fe
measurements reported by Dixon et al. [10] differ by
5 per mil, despite the fact that they used the gravi-
metric standards of Taylor et al. [11]. The cause of the
significant differences between our Fe isotope ratio
measurements and those of Dixon et al. [10] are
unexplained but may be due to the low-level detection
method used by Dixon et al. [10], in comparison to the
use of Faraday collectors by Taylor et al. [11],
Walczyk [12], and this study.

6. Conclusions

Instrumentally produced mass fractionation in a
thermal ionization mass spectrometer may be rigor-
ously corrected using the double-spike approach. The
closed-form derivation we present is completely gen-
eral, being applicable to any element with four or
more isotopes, and provides an excellent approxima-
tion to exponential mass fractionation in the TIMS
source, over the range of measured instrumentally
produced mass fractionation. In addition, it is shown
that the spike isotope composition has a significant
effect on the error propagation of the double-spike
approach. In the case of Fe isotope measurements, a
spike of;10% 58Fe and 90%54Fe minimizes prop-
agated uncertainties. This approach has produced the
highest precision Fe isotope ratios reported to date, on
the order of60.2–0.3 per mil for the54Fe/56Fe ratio,
while preserving natural isotope variations in sam-
ples. Our approach utilizes all Fe isotope ratios, which
is important for assessing data quality. In addition, Fe
isotope geochemistry is just emerging as a new
discipline, and it is as yet unknown if all terrestrial or
extraterrestrial samples lie on the same mass fraction-
ation lines; this can only be assessed by analyzing all
Fe isotope ratios. Although other instrumentation
such as ICP-MS offers higher ionization efficiency for
Fe as compared to TIMS, ArN1 and ArO1 interfer-
ences present significant difficulties in obtaining high-

Fig. 5. Calculatedd56Fe values of the J-M Fe standard, using a
range of spike fractions in the mixture (Xspike). Symbols are
averages of the 12 mixtures in Table 4. There is no bias in the
calculated true isotope composition over this range of spike
fractions, demonstrating the robustness of the double spike correc-
tion. Error envelope is the two standard deviation of the averages of
the 12 mixtures (Table 4).
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precision isotope analyses of all isotope ratios using
current ICP-MS technology.
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